Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи. Что такое канал связи Что такое каналы связи в информатике

Введение

Канал связи, канал передачи, технические устройства и тракт связи, в котором сигналы, содержащие информацию, распространяются от передатчика к приёмнику. Технические устройства (усилители электрических сигналов, устройства кодирования и декодирования сигналов и др.) размещают в промежуточных (усилительных) и оконечных пунктах связи. В качестве тракта передачи пользуются разнообразными линиями - проводными (воздушными и кабельными), радио и радиорелейными, радиоволновыми и т.д. Передатчик преобразует сообщения в сигналы, подаваемые затем на вход канала связи: по принятому сигналу на выходе канала связи приёмник воспроизводит переданное сообщение. Передатчик, канал связи и приёмник образуют систему связи, или систему передачи информации. По назначению системы, в состав которой входят каналы связи, различают: каналы телефонные, звукового вещания, телевизионные, фототелеграфные (факсимильные), телеграфные, телеметрические, телекомандные, передачи цифровой информации; по характеру сигналов, передачу которых обеспечивают каналы связи, различают каналы непрерывные и дискретные как по значениям, так и по времени. В общем случае канал связи имеет большое число входов и выходов, может обеспечивать двустороннюю передачу сигналов.

связь сигнал канал кодирование

Канал связи

Канал связи -- система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ. Канал связи включает следующие компоненты:

· передающее устройство;

· приемное устройство;

· среду передачи различной физической природы (Рис.1).

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Канал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1.

Рис.2

Классификация каналов связи

Классификация №1: Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на:

· проводные;

· акустические;

· оптические;

· инфракрасные;

· радиоканалы.

Каналы связи также классифицируют на:

· непрерывные (на входе и выходе канала - непрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала - дискретные сигналы),

· непрерывно-дискретные (на входе канала-непрерывные сигналы, а на выходе-дискретные сигналы),

· дискретно-непрерывные (на входе канала-дискретные сигналы, а на выходе-непрерывные сигналы). Каналы могут быть как линейными и нелинейными, временными и пространственно-временными.

Возможна классификация каналов связи по диапазону частот. Системы передачи информации бывают одноканальные и многоканальные. Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная): Классификация по диапазону используемых частот

· Километровые (ДВ) 1-10 км, 30-300 кГц;

· Гектометровые (СВ) 100-1000 м, 300-3000 кГц;

· Декаметровые (КВ) 10-100 м, 3-30 МГц;

· Метровые (МВ) 1-10 м, 30-300 МГц;

· Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;

· Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;

· Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;

· Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.

По направленности линий связи направленные (используются различные проводники): коаксиальные, витые пары на основе медных проводников, волоконнооптические.

ненаправленные (радиолинии); прямой видимости; тропосферные; ионосферные космические; радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).

По виду передаваемых сообщений: телеграфные; телефонные; передачи данных; факсимильные.

По виду сигналов: аналоговые; цифровые; импульсные.

По виду модуляции (манипуляции) В аналоговых системах связи: с амплитудной модуляцией; с однополосной модуляцией; с частотной модуляцией. В цифровых системах связи: с амплитудной манипуляцией; с частотной манипуляцией; с фазовой манипуляцией; с относительной фазовой манипуляцией; с тональной манипуляцией (единичные элементы манипулируют под несущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).

По значению базы радиосигнала широкополосные (B>> 1); узкополосные (B»1).

По количеству одновременно передаваемых сообщений одноканальные; многоканальные (частотное, временное, кодовое разделение каналов);

По направлению обмена сообщений односторонние; двусторонние.

По порядку обмена сообщения симплексная связь -- двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно; дуплексная связь -- передача и прием осуществляется одновременно (наиболее оперативная); полудуплексная связь -- относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

По способам защиты передаваемой информации открытая связь; закрытая связь (засекреченная).

По степени автоматизации обмена информацией неавтоматизированные -- управление радиостанцией и обмен сообщениями выполняется оператором; автоматизированные -- вручную осуществляется только ввод информации; автоматические -- процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

По назначению - телефонные - телеграфные - телевизионные - радиовещательные.

По направлению передачи - симплексные (передача только в одном направлении) - полудуплексные (передача поочередно в обоих направлениях) - дуплексные (передача одновременно в обоих направлениях).

По характеру линии связи - механические - гидравлические - акустические - электрические (проводные) - радио (беспроводные) - оптические.

По характеру сигналов на входе и выходе канала связи - аналоговые (непрерывные) - дискретные по времени - дискретные по уровню сигнала - цифровые (дискретные и по времени и по уровню).

По числу каналов на одну линию связи - одноканальные - многоканальные.


Государственный экзамен

(State examination)

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».

(Пляскин )


Канал связи. 3

Классификация. 5

Характеристики (параметры) каналов связи. 10

Условие передачи сигналов по каналам связи. 13

Литература. 14


Канал связи

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) - техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.



По типу среды распространения каналы связи делятся на:

Проводные;

Акустические;

Оптические;

Инфракрасные;

Радиоканалы.

Каналы связи также классифицируют на:

· непрерывные (на входе и выходе канала – непрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала – дискретные сигналы),

· непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),

· дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

1. Классификация по диапазону используемых частот

Ø Километровые (ДВ) 1-10 км, 30-300 кГц;

Ø Гектометровые (СВ) 100-1000 м, 300-3000 кГц;

Ø Декаметровые (КВ) 10-100 м, 3-30 МГц;

Ø Метровые (МВ) 1-10 м, 30-300 МГц;

Ø Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;

Ø Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;

Ø Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;

Ø Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.

2. По направленности линий связи

- направленные (используются различные проводники):

Ø коаксиальные,

Ø витые пары на основе медных проводников,

Ø волоконнооптические.

- ненаправленные (радиолинии);

Ø прямой видимости;

Ø тропосферные;

Ø ионосферные

Ø космические;

Ø радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).


3. По виду передаваемых сообщений:

Ø телеграфные;

Ø телефонные;

Ø передачи данных;

Ø факсимильные.

4. По виду сигналов:

Ø аналоговые;

Ø цифровые;

Ø импульсные.

5. По виду модуляции (манипуляции)

- В аналоговых системах связи :

Ø с амплитудной модуляцией;

Ø с однополосной модуляцией;

Ø с частотной модуляцией.

- В цифровых системах связи :

Ø с амплитудной манипуляцией;

Ø с частотной манипуляцией;

Ø с фазовой манипуляцией;

Ø с относительной фазовой манипуляцией;

Ø с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).

6. По значению базы радиосигнала

Ø широкополосные (B>> 1);

Ø узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

Ø одноканальные;

Ø многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

Ø односторонние;

Ø двусторонние.
9. По порядку обмена сообщения

Ø симплексная связь - двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;

Ø дуплексная связь - передача и прием осуществляется одновременно (наиболее оперативная);

Ø полудуплексная связь - относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

Ø открытая связь;

Ø закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

Ø неавтоматизированные - управление радиостанцией и обмен сообщениями выполняется оператором;

Ø автоматизированные - вручную осуществляется только ввод информации;

Ø автоматические - процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

Радиовещательные

2. По направлению передачи

Симплексные (передача только в одном направлении)

Полудуплексные (передача поочередно в обоих направлениях)

Дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

Электрические (проводные)

Радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

Аналоговые (непрерывные)

Дискретные по времени

Дискретные по уровню сигнала

Цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) ипоказывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

-- отношение спектра выходного сигнала к входному
- полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

2. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.

3. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

Мощность сигнала на выходе канала,

Мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду - бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.

Характеристики

Используют следующие характеристики канала

Помехозащищённость

Помехозащищённость . Где - минимальное отношение сигнал/шум ;

Объём канала

Объём канала определяется по формуле: ,

где - время, в течение которого канал занят передаваемым сигналом;

Для передачи сигнала по каналу без искажений объём канала должен быть больше либо равен объёму сигнала , т.е. . Простейший случай вписывания объёма сигнала в объём канала - это достижение выполнения неравенств , > и . Тем не менее, может выполняться и в других случаях, что даёт возможность добиться требуемых характеристик канала изменением других параметров. Например, с уменьшением диапазона частот можно увеличить полосу пропускания.

Классификация

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные , акустические , оптические , инфракрасные и радиоканалы.

Каналы связи также классифицируют на

  • непрерывные (на входе и выходе канала - непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала - дискретные сигналы),
  • непрерывно-дискретные (на входе канала - непрерывные сигналы, а на выходе - дискретные сигналы),
  • дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе - непрерывные сигналы).

Каналы могут быть как линейными и нелинейными, временными и пространственно-временными . Возможна классификация каналов связи по диапазону частот.

Модели канала связи

Канал связи описывается математической моделью , задание которой сводится к определению математических моделей выходного и входного и , а также установлению связи между ними, характеризующейся оператором , т.е.

.

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал является детерминированным, т.е.

где γ – константа, определяющая коэффициент передачи, τ – постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что является случайной величиной . Например, если входной сигнал является узкополосным, то сигнал на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

,

где учтено, что входной сигнал может быть представлен в виде:

,

где - преобразование Гильберта , - случайная фаза, распределение которой считается обычно равномерным на интервале .

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, т.е. например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.

Модели дискретных каналов связи

Для задания модели дискретного канала необходимо определить множество входных и выходных кодовых символов, а также множество условных вероятностей выходных символов при заданных входных .

Модели дискретно-непрерывных каналов связи

Также существуют модели дискретно-непрерывных каналов связи

См. также

Примечания

Литература

  • Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В., Теория электрической связи / Под ред. Д. Д. Кловского. - Учебник для ВУЗов. - М .: Радио и связь, 1999. - 432 с. -

КАНАЛЫ СВЯЗИ


1. Классификация и характеристики канала связи

Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к. , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3. Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X), (2)

где: I (Y, X) – взаимная информация, т.е. количество информации, содержащееся в Y относительно X; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x).

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .


Основной функцией информационной системы является хранение информации и ее перенос в пространстве. Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи. Этими средствами являются передающее устройство, линия связи и приемное устройство. Иногда в понятие система связи включаются источник и потребитель сообщений.

Структурная схема простейшей системы связи представлена на рисунке 2. Здесь исходным пунктом является источник сообщения. Источник может вырабатывать непрерывное или дискретное сообщения. Источником сообщений и получателем в одних системах связи может быть человек, в других - различного рода устройства (автомат, вычислительная машина и т. п.). Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумага, магнитная лента и т.п.) или физического процесса (звуковых или электромагнитных волн, тока и.т.п.).

Источник информации или сообщения - это физический объект, система или явление, формирующие передаваемое сообщение.

Сообщение - это значение или изменение некоторой физической величины, отражающие состояние объекта (системы или явления). Как правило, первичные сообщения - речь, музыка, изображения, измерения параметров окружающей среды и т.д., представляют собой функции времени - f (t) или других аргументов - f (x, y, z) неэлектрической природы (акустическое давление, температура, распределение яркости на некоторой плоскости и т.п.).

Рис.2. Структурная схема системы связи.

Каждое i - ое сообщение источника есть произвольная последовательность элементов алфавита
(
,
, ...,) длиной
m , где верхний индекс у элементов есть номер последовательности, а нижний индекс означает только место буквы в сообщении, но не ее вид.

При m = 1 сообщением является одна буква, то есть такое сообщение есть элементарное сообщение . В общем случае при m > 1 одна и та же буква может появиться в сообщении несколько раз. Общим свойством элементарного сообщения является его неделимость на более мелкие сообщения.

Конечное множество сообщений X c заданным на нем распределением вероятностей p ( x ) называется дискретным ансамблем сообщений и обозначается { X , p ( x )}.

Устройство, преобразующее сообщение в сигнал, называют передающим устройством, а устройство, преобразующее принятый сигнал в сообщение, - приемным устройством.

С помощью преобразователя в передающем устройстве сообщение а , которое может иметь любую физическую природу (изображение, звуковое колебание и т.п.), преобразуется в первичный электрический сигнал b (t ). В телефонии, например, эта операция сводится к превращению звукового давления в пропорционально изменяющийся электрический ток микрофона. В телеграфии сначала производится кодирование, в результате которого последовательность элементов сообщения (букв) заменяется последовательностью кодовых символов (0, 1 или точка, тире), которая затем с помощью телеграфного аппарата преобразуется в последовательность электрических импульсов постоянного тока.

В передатчике первичный сигнал b (t ) (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал u (t ), пригодный для передачи по используемому каналу. Это осуществляется посредством модуляции.

Преобразование сообщения в сигнал должно быть обратимым. В этом случае по выходному сигналу можно, в принципе, восстановить входной первичный сигнал, т. е. получить всю информацию, содержащуюся в переданном сообщении. В противном случае часть информации будет потеряна при передаче, даже если сигнал доходит до приемного устройства без искажений.

Физический процесс, отображающий (несущий) передаваемое сообщение, называется сигналом.

Сигнал – это материально-энергетическая форма представления информации. Другими словами, сигнал – это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение.

Цепь “информация – сообщение – сигнал” – это пример процесса обработки, необходимой там, где находится источник информации. На стороне потребителя информации осуществляется обработка в обратном порядке: “сигнал – сообщение – информация”.

Любое преобразование сообщения в определенный сигнал путем установления между ними однозначного соответствия называют в широком смысле кодированием.

Кодирование может включать в себя процессы преобразования и дискретизации непрерывных сообщений (аналого-цифровое преобразование), модуляцию (манипуляцию в цифровых системах связи) и непосредственно кодирование в узком смысле слова. Обратная операция называется декодированием.

Линией связи называется среда, используемая для передачи сигналов от передатчика приемнику.

В системах электрической связи - это кабель или волновод, в системах радиосвязи - область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику. При передаче сигнал может искажаться и на него могут накладываться помехи n (t ).

Приемное устройство обрабатывает принятое колебание z (t )=u (t )+n (t ), представляющее собой сумму пришедшего искаженного сигнала u (t ) и помехи n (t ), и восстанавливает по нему сообщение , которое с некоторой погрешностью отражает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания z (t ) определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В (рис. 3).

Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Часть системы связи, расположенная до точки А , является источником сигнала для этого канала.

Рис. 3. Канал связи.

Канал как источник помех, оказывает на передаваемый сигнал некоторое влияние. Задачами приемника является выделение из зашумленного сигнала переданного сообщения и отправка его потребителю.

Классифицируют каналы связи по различным признакам, в том числе по математическому описанию (непрерывные и дискретные каналы, непрерывного и дискретного времени).

Если сигналы, поступающие на вход канала и принимаемые с его выхода, являются дискретными по состояниям, то канал называется дискретным. Если же эти сигналы являются непрерывными, то канал называется непрерывным. Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Из сказанного видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

В данном пособии будем рассматривать дискретный канал связи .

Если вредным действием помех в канале можно пренебречь, то для анализа используется модель в виде идеализированного канала, называемого каналом без помех . В идеальном канале каждому сообщению на входе однозначно соответствует определенное соотношение на выходе и наоборот. Когда требования к достоверности велики и пренебрежение неоднозначностью связи между сообщениями x и y недопустимо, используется более сложная модель – канал с помехами.

Простейший класс моделей каналов образуют дискретные каналы без памяти; они определяются следующим образом. Входом является последовательность букв (элементов) из конечного алфавита, пусть
,
выходом – последовательность букв того же самого или другого алфавита, скажем
. Наконец, каждая буква выходной последовательности зависит статистически только от буквы, стоящей на соответствующей позиции во входной последовательности, и определяется заданной условной вероятностью
, определенной для всех буквалфавита на входе и всех буквна выходе. Примером может служить двоичный симметричный канал (рис.4), который представляет собой дискретный канал без памяти с двоичными последовательностями на входе и выходе, в котором каждый символ последовательности на входе с некоторой вероятностью 1-q воспроизводится на выходе канала правильно и с вероятностью q изменяется шумом на противоположный символ. В общем случае, в дискретном канале без памяти переходные вероятности исчерпывают собой все известные сведения о том, как сигнал на входе, взаимодействуя с шумом, образует сигнал на выходе.

Рис. 4. Двоичный симметричный канал.

Намного более широкий класс каналов – каналов с памятью, образуют каналы, в которых сигналами на входе являются последовательности букв из конечных алфавитов, но в которых каждая буква на выходе может статистически зависеть не только от соответствующей буквы входной последовательности.

Поделиться